

reCIRCLE

LIFE CYCLE ANALYSIS AND CIRCULARITY

Alexandre Bouchet
Alexandre.bouchet@e-a.earth

Julien Boucher, Phd Julien.boucher@e-a.earth

Content \& Reading guide

OBJECTIVE \& ASSUMPTIONS

ENVIRONMENTAL IMPACTS
($\left.\mathrm{CO}_{2} / \mathrm{UBP} / \mathrm{PLASTIC}\right)$

CIRCULARITY INDEX

CONCLUSIONS
\& LEADS FOR IMPROVED ECODESIGN

ANNEXES

Summary of results:

CO_{2} eq, UBP, plastic impacts \& circularity

The following table presents the $\mathrm{CO}_{2} \mathrm{eq}$, UBP and plastic impacts of $10,582,000$ meals distributed (equivalent to the number of meals distributed by reCIRCLE in 2019) per type of container:

* For an average of

200 uses
(1) Objective \&
Assumptions

Functional unit

UF: Distribution of a meal in a takeaway box.

Comparative assumptions

ReCIRCLE BOX 2

Volume: 1000 mL : total weight $=186 \mathrm{~g}$ Description: box in iQ PBT and lid in PP

Polypropylene (PP) box ${ }^{1}$

Volume: 800 mL ; total weight $=31.5 \mathrm{~g}$
Description: box and lid in PP

Aluminium (Alu) box ${ }^{1}$

Volume: 980 mL ; total weight $=14.5 \mathrm{~g}$
Description: box in aluminium with lid in cardboard and PE film

Kraft paper box ${ }^{2}$

Volume: 940 mL ; total weight $=26 \mathrm{~g}$
Description: box in kraft paper and PE film

${ }^{1}$ Gallego-Schmid, A., Mendoza, J. M. F., \& Azapagic, A. (2019). Environmental impacts of takeaway food containers. Journal of Cleaner Production, 211 , 417-427.
${ }^{2}$ https://www.alibaba.com/product-detail/Custom-printed-disposable-take-away-kraft_1600080237094.html ;
https://www.dsymachinery.com/paper-cup-business-tips/
(2) Environmental impact (CO_{2}, UBP, Plastic)

2.1 Carbon

footprint

$\mathrm{CO}_{\mathbf{2}}$ gains from reCIRCLE meals in 2019

An average of $\mathbf{2 0 0}$ uses per reCIRCLE box is assumed.

In 2019, substituting the reCIRCLE box2 for some 10 million disposable meal boxes made of aluminium, kraft paper or polypropylene (assumed in equal shares) avoided 254 tonnes of disposable meal boxes. This generated a gain of about $674 \mathrm{tCO}_{2} \mathrm{eq}$ in mixed-washing (50\% handwashing/50\% dishwasher) and 709 tCO2eq in industrial washing alone.

Past and future $\mathbf{C O}_{2}$ gains with reCIRCLE boxes

reCIRCLE BOX market substitution in Switzerland:
CO2 impacts

From 2017 to 2019, reCIRCLE boxes (used in mixed-washing) generated gains of about $989 \mathrm{tCO}_{2} \mathrm{eq}$ and could generate future gains of $21,100 \mathrm{tCO}_{2}$ eq from 2020 to 2027.

Importance of the number of reuses for the reCIRCLE (1/2) box

CO2 impact vs. number of uses for a 1 meal basis

We note that a reCIRCLE box must be reused at least 13 to 15 times depending on the type of washing to have less $\mathrm{CO}_{2} \mathrm{eq}$ impact than an average disposable box.

Importance of the number of reuses for the reCIRCLE (2/2) box

However, if we look at the best disposable alternative considered (at present «Kraft box»), between $\mathbf{3 0}$ to $\mathbf{3 5}$ reuses with mixed-washing of the reCircle box are required to have a lower impact

reCIRCLE 2 boxes: $\mathrm{kgCO}_{2} \mathbf{e q}$ impacts per meal compared to

 disposable alternatives, with a standard energy mix
$-0,1$

reCIRCLE 2 boxes: $\mathrm{kgCO}_{2} \mathbf{e q}$ impacts per meal compared to

 disposable alternatives, with a 50\% solar energy mix
(22) Ecological load units

UBP

UBP gains with reCIRCLE meals in 2019

An average of $\mathbf{2 0 0}$ uses per reCIRCLE box is assumed.

In 2019, substituting the reCIRCLE box2 for some 10 million disposable meal boxes made of aluminium, Kraft paper or polypropylene (assumed in equal shares) generated a gain of 708 million UBP in mixed-washing (50\% hand-washing/50\% dishwasher) and 764 million UBP in industrial washing alone. This corresponds to about 1% of the objective set by the Swiss Government (70 billion UBP)

Past and future UBP gains with reCIRCLE boxes

reCIRCLE BOX market substitution in Switzerland:
Ecosystem impacts

n
From 2017 to 2019, reCIRCLE boxes (in mixed-washing) generated gains of about 1,038 million UBP and could generate future gains of $\mathbf{2 2 , 1 4 7 7}$ million UBP from 2020 to 2027.
reCIRCLE 2 boxes: UBP impacts per meal compared to disposable alternatives, with a standard energy mix

reCIRCLE 2 boxes: UBP impacts per meal compared to disposable alternatives, with a 50\% solar energy mix

2.3) Plastic
footprint

Plastic gains with reCIRCLE meals in 2019

An average of $\mathbf{2 0 0}$ uses per reCIRCLE box is assumed.

In 2019, substituting the reCIRCLE box2 for some 10 million disposable meal boxes made of aluminium, Kraft paper or polypropylene (assumed in equal shares) avoided 2.3 tonnes of plastic leakage into the environment.
reCIRCLE 2 boxes: plastic footprint compared to disposable alternatives, in g of plastic leakage per meal

(2.4) Summary of environmental impacts

Summary:

CO_{2}, UBP, plastic impacts

The following table presents the CO_{2}, UBP and plastic impacts of 10,582,000 meals distributed (equivalent to the number of meals distributed by reCIRCLE in 2019) per type of container:

Product
$\mathbf{C O}_{2}$ impact ($\mathrm{t} \mathrm{CO}_{2} \mathrm{eq}$)
UBP impact (mn UBP)
Plastic leakage (\mathbf{t})

(3) Circularity index

Circularity index:
 EMF method

By using the approach developed by the Ellen McArthur Foundation in its publication "EMF (2015). Circularity Indicators. An Approach to Measuring Circularity", we calculated the Material Cirularity Indicator (MCI) for the different boxes, taking a disposable meal box as a reference product. The detailed calculation for the reCIRCLE box is given in the section "Annexes".

Product

Aluminium box

Kraft paper box

Circularity

99\%
(4) Conclusions
and leads for
improved
ecodesign

Key findings

- The substitution of disposable boxes by reCIRCLE BOX 2 boxes in mixedwashing (50% hand-washing, 50% dishwasher) made it possible to reduce the CO_{2} eq impact by 77% and the UBP impact by 65%.
- The reCIRCLE box must be used between 13 to 15 times depending on the type of washing to have less impact than an average disposable box.
- The biggest impact of the reCIRCLE boxes (for 200 uses) is that of handwashing or dishwashing, with the bulk of the energy required to heat the tap water or run the dishwasher.
- Increasing the solar share of the energy mix to 50% when hand-washing the reCIRCLE box makes it possible to further reduce the $\mathrm{CO}_{2} \mathrm{eq}$ impact by about 12% for a Kraft paper box. On the other hand, the same operation via dishwashing or industrial washing yields a slight additional reduction in the CO_{2} eq impact (2 to 3\%).
- Using reCIRCLE boxes instead of disposable boxes makes it possible to avoid the plastic pollution generated by littering with disposable boxes.

Key remarks

- The iQ PBT currently in use provides a 29% reduction in CO2eq impact compared to a standard PBT, but the UBP impact reduction is not known. A thorough analysis of the full environmental impact of the iQ PBT would be desirable.
- The average volume of the disposable meal boxes studied seems to be close to 900 mL , while the volume of the most used reCIRCLE box is 1000 mL .
- The findings presented in this study are conservative because we consider that the reCIRCLE box only replaces one disposable box, whereas in practice a meal may consist of two disposable boxes (one for the main course, one for the side dish) and be served with a napkin and disposable cutlery in a plastic bag. These latter items have not been included in our calculations.

[^0]
Ecodesign leads

Washing instructions

- Use cold water when hand-washing
- Operation with more renewable energy is recommended

Promote reuse

- Introduce a "gamification" system to encourage the reuse of boxes
- Introduce a kit with reusable cutlery, bag and napkin to avoid collateral waste from takeaway

Rethink design

- Explore alternatives to iQ PBT
- Slightly reduce box size
- Lighten boxes if technically feasible

Possible actions and potential gains in 2019

Number of reCIRCLE meals in 2019: 10,582,000

	CO 2			UBP		
Actions	Impact tCO2-eq	gain tCO2-eq	$\begin{aligned} & \text { gain tCO2-eq } \\ & (\%) \end{aligned}$	Impact millions UBP	gain millions UBP	$\begin{aligned} & \text { gain millions } \\ & \text { UBP (\%) } \end{aligned}$
Scenario mixed washing (50\% hand-wash, 50\% dishwasher)	199			380		
Reduce the temperature of the tap water from 35° to 20° when hand-washing	155	44	22\%	331	49	13\%
Increase the proportion of solar-thermal energy to 50\% for hand-washing	172	27	14\%	362	19	5\%
Increase the proportion of photovoltaic solar energy to 50% for using the dishwasher	194	5	2\%	318	62	16\%
Reduce by half the quantity of soap used when hand-washing	190	8	4\%	362	18	5\%
Reduce by half the quantity of detergent used when using the dishwasher	193	6	3\%	366	15	4\%
Lighten reCIRCLE BOX 2 by 10\%	195	4	2\%	375	5	1\%
Reduce the volume of the reCIRCLE BOX by 20\%	190	9	5\%	369	11	3\%

(5) Annexes

5.1 Detailed
$\mathrm{CO}_{2} \mathrm{eq}$
impacts for the reCIRCLE box

reCIRCLE 2 box: detailed CO_{2} eq impacts for meal use with handwashing

An average of $\mathbf{2 0 0}$ uses per reCIRCLE box is assumed.

Assumptions per use:
Water temperature $=35^{\circ} \mathrm{C}$
Water consumption = 2 litres
Consumption of washing-up
liquid $=0.8 \mathrm{~g}$

There is a dominant impact during use, particularly due to the type of energy used to heat the tap water.

reCIRCLE 2 box: detailed CO_{2} eq impacts for meal use with dishwashing

An average of $\mathbf{2 0 0}$ uses per reCIRCLE box is assumed.

Assumptions per use:
Max. number of boxes per machine cycle = 15

Electricity consumption (box)
$=0.055 \mathrm{kWh}$
Water consumption (box) = 0.9 litres

Detergent consumption (box)
$=1 \mathrm{~g}$

One notes a dominant impact during use, particularly due to the origin of the electricity used to run the machine.

reCIRCLE 2 box: detailed CO_{2} eq impacts for meal use with industrial washing

5.2) Detailed
calculation
of circularity
for the
recircle box

Circularity index:

Details of calculations using the EMF method

The detailed calculation of materials of the reCIRCLE BOX 2 is described in the table below:

Material	Mass (kg)	\% recycled feedstock	\% reused feedstock	\% recycled after disposal	\% reused after disposal	Recycling yield (E_{c})	Uses (U)
PBT	0.15	0\%	0\%	30\%	0\%	95\% ${ }^{1}$	200
PP	0.036	0\%	0\%	30\%	0\%	95\% ${ }^{2}$	100

${ }^{1}$ Chen, Y. J., Huang, X., Chen, Y., Wang, Y. R., Zhang, H., Li, C. X., ... \& Lan, Y. Q. (2019). Polyoxometalate-Induced Efficient Recycling of Waste Polyester Plastics into MetalOrganic Frameworks. CCS Chemistry, 1(5), 561-570.
${ }^{2}$ van Velzen et al. (2017, December). Efficiency of recycling post-consumer plastic packages. In AIP Conference Proceedings (Vol. 1914, No. 1, p. 170002). AIP Publishing LLC
The Material Circularity Indicator is calculated in 5 steps:

1. Virgin feedstock

$$
\begin{aligned}
& \text { We know that } F_{R, P B T}=F_{R, P P}=0 \text { and } F_{U, P B T}=F_{U, P P}=0 \\
& \text { And as } V=M \cdot\left(1-F_{R}-F_{U}\right) \text {, } \\
& V=V_{P B T}+V_{P P}=M_{P B T}+M_{P P}=0.186
\end{aligned}
$$

Circularity index:
 Details of calculations using the EMF method

2. Unrecoverable waste

We know that $C_{R, P B T}=C_{R, P P}=0.3, C_{U, P B T}=C_{U, P P}=0$ and $E_{C, P B T}=E_{C, P P}=0.95$, then

- The amount going to landfill or energy recovery is $W_{0}=M\left(1-C_{R-} C_{U}\right)$,

So: $W_{0}=W_{0, P B T}+W_{0, P P}=(0.186) \cdot(1-0.3)=0.1302$

- The mass unrecovered during the recycling process is $W_{C}=M\left(1-E_{C}\right) C_{R}$, So: $W_{C=} W_{C, P B T}+W_{C, P P}=(0.186) \cdot(1-0.95) \cdot(0.3)=0.00279$
- The mass unrecovered when producing recycled feedstock is $W_{F}=M\left(\left(1-E_{F}\right) F_{R}\right) / E_{F}$, So: $W_{F=} W_{F, P B T}+W_{F, P P}=0$, since $F_{R, P B T}=F_{R, P P}=0$
- Eventually, the total waste unrecoverable is equal to:

$$
\begin{aligned}
& W=W_{0}+\left(W_{C}+W_{F}\right) / 2 \\
& W=0.1302+0.00279 / 2=0.1316
\end{aligned}
$$

Circularity index:
 Details of calculations using the EMF method

3. Linear Flow Index

According to the methodology,

$$
\begin{aligned}
& L F I=(V+W) /\left(2 M+\left(W_{F}-W_{C}\right) / 2\right) \\
& L F I=(0.186+0.1316) /(2.0 .186+(0-0.00279) / 2))=0.86
\end{aligned}
$$

4. Utility Factor

A single-use food container is assumed to be used $U_{\mathrm{av}}=1$ time on average, while the reCIRCLE container is used on average $\cup_{P B T}=200$ and the lid $U_{P P}=100$.

Eventually in this case, $X=U / U_{a v}=\left(U_{P B T}+U_{P P}\right) / 2 \cdot\left(1 / U_{a v}\right)=150 / 1=150$
and $F(X)=0.9 / X=0.9 / 150=0.006$
5. Material Circularity Index

The MCl of the reCIRCLE BOX 2 compared to single use containers is:
$M C I=\max (0 ; 1-L F I . F(X))=\max (0 ; 1-(0.86) .(0.006))=0.99^{*}$

* If we assume that we compare our product to reusable containers, the average number of uses would be $\mathrm{U}_{\mathrm{av}}=43$ (source: Harnoto, M. F. (2013). A

Circularity index:

Details of calculations using the EMF method

Then we calculate the MCl for the single-use containers compared in the reCIRCLE study based on the detailed calculations of materials of the single-use containers with assumptions used in the study:

Product	Material	Mass (g)	\% recycled feedstock	\% reused feedstock	\% recycled after disposal ${ }^{3}$	\% reused after disposal	Recycling yield (E_{c})	Uses (U)
Alu box	Aluminium	7.6	60\% ${ }^{1}$	0\%	40\% ${ }^{1}$	0\%	100\%	1
	Paper	6.6	47\% ${ }^{2}$	0\%	0\%	0\%	77\% ${ }^{3}$	1
	PE	0.3	0\%	0\%	0\%	0\%	-	1
PP box	PP	31.5	0\%	0\%	0\%	0\%	-	1
Kraft box	Kraft paper	24.6	47\% ${ }^{2}$	0\%	0\%	0\%	77\% ${ }^{3}$	1
	PE	1.4	0\%	0\%	0\%	0\%	-	1

${ }^{1}$ Expert assessment by IGORA (https://igora.ch/fr/home/)
${ }^{2}$ Appendix C in Nessi S., Sinkko T., Bulgheroni C., Garcia-Gutierrez P., Giuntoli J., Konti A., Sanye-Mengual E., Tonini D., Pant R., Marelli L., Comparative Life Cycle Assessment (LCA) of Alternative Feedstock for Plastics Production - Part 1, European Commission, Ispra, 2020
${ }^{3}$ Corresponds to the product between recycled pulping and paper making yield ratios from Table 1 in Van Ewijk, S. et al. (2018). Global life cycle paper flows, recycling metrics, and material efficiency. Journal of Industrial Ecology, 22(4), 686-693.

Circularity index:

Details of calculations using the EMF method

Following the same approach as for the reCIRCLE BOX 2 and assuming that utility is in the industry average for the single use containers ($X=U / U a v=1$), we obtain the following MCIs for single-use containers that we compare with the reCIRCLE BOX 2 :

Product

Kraft paper box

Polypropylene box (PP)

Material Circularity Indicator
ELLEN MACARTHUR Foundation

99\%

$$
\text { + } 41 \text { (0) } 765325727
$$

EA - environmental action

EA - environmental action

[^0]: ${ }^{1}$ Gallego-Schmid, A., Mendoza, J. M. F., \& Azapagic, A. (2019). Environmental impacts of takeaway food containers. Journal of Cleaner Production, 211, 417-427.

